If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying X2(x2 + -49) + -81(x2 + -49) = 0 Reorder the terms: X2(-49 + x2) + -81(x2 + -49) = 0 (-49 * X2 + x2 * X2) + -81(x2 + -49) = 0 (-49X2 + x2X2) + -81(x2 + -49) = 0 Reorder the terms: -49X2 + x2X2 + -81(-49 + x2) = 0 -49X2 + x2X2 + (-49 * -81 + x2 * -81) = 0 -49X2 + x2X2 + (3969 + -81x2) = 0 Reorder the terms: 3969 + -49X2 + -81x2 + x2X2 = 0 Solving 3969 + -49X2 + -81x2 + x2X2 = 0 Solving for variable 'X'. Move all terms containing X to the left, all other terms to the right. Add '-3969' to each side of the equation. 3969 + -49X2 + -81x2 + -3969 + x2X2 = 0 + -3969 Reorder the terms: 3969 + -3969 + -49X2 + -81x2 + x2X2 = 0 + -3969 Combine like terms: 3969 + -3969 = 0 0 + -49X2 + -81x2 + x2X2 = 0 + -3969 -49X2 + -81x2 + x2X2 = 0 + -3969 Combine like terms: 0 + -3969 = -3969 -49X2 + -81x2 + x2X2 = -3969 Add '81x2' to each side of the equation. -49X2 + -81x2 + 81x2 + x2X2 = -3969 + 81x2 Combine like terms: -81x2 + 81x2 = 0 -49X2 + 0 + x2X2 = -3969 + 81x2 -49X2 + x2X2 = -3969 + 81x2 Reorder the terms: 3969 + -49X2 + -81x2 + x2X2 = -3969 + 81x2 + 3969 + -81x2 Reorder the terms: 3969 + -49X2 + -81x2 + x2X2 = -3969 + 3969 + 81x2 + -81x2 Combine like terms: -3969 + 3969 = 0 3969 + -49X2 + -81x2 + x2X2 = 0 + 81x2 + -81x2 3969 + -49X2 + -81x2 + x2X2 = 81x2 + -81x2 Combine like terms: 81x2 + -81x2 = 0 3969 + -49X2 + -81x2 + x2X2 = 0 The solution to this equation could not be determined.
| 2+n=16-6n | | 8x-7=5x-1 | | x^2+6x-600=0 | | 3c^3+3c^2-18c=0 | | n/4=-11 | | -u^2-u+2=0 | | (7+h)+5=7+(h+5) | | 3-x=5x-33 | | 3(2x-1)+5=(x+1) | | 10+6n+7n=7n+8n | | Y-5=10 | | 5x-x=-33-3 | | 20-2n=10-3x | | 144x^2-225y^2= | | 12x^2+36x+15= | | -33-5x=3-x | | 4(250c)= | | 125a-8a^4=0 | | -5x+3=-33-x | | 4m^3+108= | | 3(x-6)+6=5(x+2)-6 | | (3v-2)(9-v)=0 | | 8x-2y=1 | | 4[x+3(6-x)]=4x+1 | | 5x-12=4x+8 | | 6x+8-9x=16-18x+15x-8 | | 5-3x=-x+1 | | 8n-8=7n+6-6 | | 5/3+4x=14 | | 1+1000y^3=0 | | 20b^2-17br-63r^2=0 | | 0.006(x+2)=0.007+0.009 |